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Abstract

In the paper, I examine free entry in homogeneous product markets and its social

efficiency. Previous research on free entry in homogeneous product markets has shown

that under Cournot oligopoly with fixed setup costs the free entry equilibrium always

delivers excessive entry. In contrast, I demonstrate in this paper that free entry along with

excessive entry might also lead to a socially insufficient number of firms when a demand

parameter uncertainty is considered. My findings support the validity of the traditional

wisdom in industrial organization that free entry is desirable for social efficiency and

call for revision of restrictive entry regulation practices which been based on previous

research findings.
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Abstrakt

V tomto článku se zabývám volným vstupem na trhy s homogenními produkty a jejich

společenskou efektivitou. Předchozí výzkum volného vstupu na trhy s homogenními pro-

dukty ukázal, že za předpokladu Cournotova modelu oligopolu s fixními náklady, volný

vstup vede k nadměrnému vstupu firem. V kontrastu k tomuto demonstruji v tomto

článku, že volný vstup spolu s nadměrny̌m vstupem firem může také vést k společen-

sky nedostatečnému počtu firem, pokud budeme uvažovat nejistotu ohledně parametrů

poptávky. Moje závěry podporují tradiční pohled v organizaci trhů a odvětví, že volný

vstup je žádoucí pro společenskou efektivitu a vyzývá k revizi restriktivních regulačních

praktik vůči volnému vstupu, které byly založeny na základě předchozího výzkumu.
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1. Introduction

In general, free entry is assumed to be desirable for a society from a social welfare point

of view and has been traditional wisdom among economic professions. However, many

economists have challenged this view and showed that in homogeneous product markets

with imperfect competition, when firms pay a fixed set-up cost upon entry, the free en-

try equilibrium number of firms exceeds the socially optimum number of firms, known

as the excess entry theorem, see Weizsaker (1980), Perry (1984), Mankiw and Whinston

(1986), Suzumura and Kiyono (1987), Berry and Waldfogel (1999), Ohkawa, Okamura,

Nakanishi, and Kiyono (2005).1 In this paper, I study the social efficiency of free en-

try and show that the excess entry theorem might not hold in the homogenous product

markets when the demand parameter uncertainty is considered.

The most prominent work, which provided the first excess entry theorem results un-

der general settings and provoked intensive research in this area, is Mankiw and Whin-

ston (1986). They find that free entry is not socially desirable due to a so called “business

stealing” effect which is present when “... the equilibrium output per firm declines as the

number of firms grow". Due to new entry, incumbent firms are forced to reduce output

and entry is more desirable to new entrants than it is to society, implying excessive entry

under free entry.

The excess entry theorem advocates restrictive entry polices; but under restricted en-

try a fixed number of firms operate in the market, and firms’ recognition of their mutual

interdependence might propagate a collusive pricing behavior. The latter idea goes back

to Chamberlin (1929) and is not captured by the excess entry theorem. The higher num-

ber of firms might hinder the propagation of such collusive pricing behavior and entry

acquires an additional effect, i.e. the “competition" effect. This has an opposite impact

on social welfare than the “business stealing” effect and makes entry more desirable for

society. Hence, if the “competition" effect is present, the results of the excess entry the-

orem might not hold, or would depend on the net gain from entry and not only on the

1For a recent discussion of the excess entry theorem one can refer to Suzumura (2012).
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“business stealing” effect.

The purpose of my paper is to reexamine the social efficiency of free entry under

the settings of Mankiw and Whinston (1986), but explicitly modeling for the mutual

interdependence of firms and the “competition" effect missing there. The building blocks

of the model in the paper are the same as in Mankiw andWhinston (1986) but in addition

I assume a market with a linear inverse demand curve where demand parameters, a slope

and an intercept, are unknown to firms. Firms observe only price and their own output

and do not observe their rivals’ output.

To make production decisions, firms form beliefs about unknown parameters and un-

observed rivals’ output. After the production decision is made, a new market price is re-

alized and firms update their beliefs using Bayes’ rule. Additionally, beliefs are required

to be consistent with the observations. This leads to the notion of the self-confirming

equilibrium (SCE) as the solution concept (see Fudenberg and Levine (1993), Sargent

(1999), Sargent (2008)).

The SCE is less restrictive than the Nash equilibrium and does not require firms to

have correct beliefs off the equilibrium path. Firms are aware of this and are interested

to generate more information about the off-equilibrium path by an “experimentation" to

see if they have appropriate beliefs.2 The “experimentation" is modeled as random per-

turbations over a firm’s best response to its current beliefs maximizing the instantaneous

expected profit. The “experimentation" is costly in terms of forgone instantaneous ex-

pected profit and firms are assumed to keep the variation of random perturbations close

to zero.

Dekel, Fudenberg, and Levine (2004), studying games without common priors about

Nature’s move and unobserved opponents’ play, show that the set of SCE might include

non-Nash outcomes. As firms, in my model, observe neither Nature’s nor opponents’

moves, (in line with Dekel, Fudenberg, and Levine (2004)) one might expect the SCE

to include non-Nash outcomes. Janjgava and Slobodyan (2011), in similar settings to

2For detailed considerations about “experimentation" see Fudenberg and Levine (2009).
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those in my model but for the duopoly case, show that firms might engage in cooperative

behavior if their beliefs become interdependent enough to coordinate their actions. I

extend the model developed in Janjgava and Slobodyan (2011) for the oligopoly case,

and find that their findings remain valid in the case of oligopoly as well. In addition, I

identify the conditions when the interdependence, which leads to cooperative behaviors,

might arise.

In my model, as firms might be engaged in cooperative behavior, the “competition"

effect of entry becomes operative. As far as the “competition" effect enhances social wel-

fare, in contrast to the “business stealing" effect, entry has a higher social value under

demand uncertainty than in the case of the perfect information of Mankiw andWhinston

(1986). I find that for lower fixed-setup costs, the results of the excess entry theorem is

altered, and the optimal number of firms under demand uncertainty coincides with the

free entry number of firms. Thus, the results of the paper highlight the importance of the

demand parameter uncertainty for the social desirability of free entry and finds support

for the traditional wisdom.

The rest of the paper is organized as follows. Section 2 presents the model, develops

the firms’ decision problem, and formation and updating of beliefs. Section 3 defines

the self-confirming equilibrium that coincides with the Cournot-Nash equilibrium of the

model and a dominant escape path from it. In Section 4, I study the conditions un-

der which implicit coordination towards collusion is impossible and define the collusion

frontier. Section 5 introduces free entry and considers the social planner’s problem under

free entry when implicit coordination on collusive outcomes might arise endogenously.

Finally, Section 6 concludes.

2. The Model Setup

Consider an oligopolistic industry comprised of N firms producing a single, homoge-

neous good where explicit collusion is forbidden by the antitrust law. It is assumed that
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firms possess a homogeneous production technology with a constant marginal cost c and

a fixed setup cost K . The industry faces a linear inverse demand schedule:

yn = a− bQn, (1)

where a and b are unknown positive constants, and Qn = Q−in + qin is industry supply; qin

stands for a firm i ′s individual output and Q−in is rivals’ output and not observed by the

firm i.

�A firm’s decision problem. Given the linear inverse demand function firm i constructs

a linear subjective model of demand

yin = x
⊺

inθ
i
n +u

i
n, (2)

where xin = (1,qin)
⊺; θin = (a − bQ−in ,−b)

⊺ ∈ Θ is a vector of unknown parameters ; the

error term uin ∼N (0,σ2) captures the possibility of mistakes in constructing the subjective

model.

Define history in period n as hin = {ys,qis}n−1s=1 . At the beginning of each period n, firm

i updates its prior beliefs µin−1(θ
i
n|hin−1) = P(θin|hin−1) over Θ, the set of unknown parame-

ters, given the realized price yn−1 using the Bayes’ rule

µin(θ
i
n|hin) ∝ P(hin|θin,hin−1)µin−1(θin|hin−1). (3)

Given the current beliefs µin(θ
i
n|hin), firm i solves the profit maximization problem

πin =max
qin

∫

Θ

(

(x
⊺

inθ
i
n +u

i
n − c)qin −K

)

dµin(θ
i
n|hin), (4)

which yields the following decision rule

q̂in =max
{

θ̂i0n − c
−2θ̂i1n

,0
}

, (5)
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where θ̂in =
∫

Θ
θindµ

i
n(θ

i
n|hin).

Firm i ′s belief µin is required to be consistent with observations and the solution con-

cept becomes the self-confirming equilibrium (SCE). The SCE is less restrictive than the

Nash equilibrium and does not require firms to have correct beliefs off the equilibrium

path. Firms are aware of this and are interested in generating more information about

the off-equilibrium path by an “experimentation" to see if they have appropriate beliefs.3

The “experimentation" is modeled as a random perturbation over firm i ′s best re-

sponse to its current beliefs and the final production decision is given as

qin = q̂
i
n +ω

i
n,

where ωin is assumed to be an ex post privately observable Gaussian white noise.

The “experimentation" is costly in terms of the forgone expected profit and i is inter-

ested in keeping the variation of random perturbation ωin close to zero.

� A firm’s estimation model. Firms anticipate that, due to learning, the actual environ-

ment is not stationary and thus, the opponents’ strategies should not be stationary either.

Hence, it is assumed that firms consider unknown parameters θin as time-varying and

adopt a time-varying parameter (TVP) estimation model4

yin = x
⊺

inθ
i
n +u

i
n,

θin = θ
i
n−1 + η

i
n,

(6)

where η in ∼N (0,Vi ).

Given the estimation model (6), firm i updates their beliefs µin(θ
i
n|hin), represented by

a normal distribution

θin|hin ∼N (θ̂in,σ
2P̂ in),

3For detailed considerations about the “experimentation" see Fudenberg and Levine (2009).
4TVP is commonly used in learning literature in the industrial organization as well as in macroeco-

nomics: see Slade (1989), Balvers and Cosimano (1990), Balvers and Cosimano (1993), Sargent (1999), Cho,
Williams, and Sargent (2002).
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γin → qin

γjn → qjn

yn

γin+1 → qin+1

γjn+1 → qjn+1

yn+1

Figure 1. Timing of the model

recursively using the Kalman filter equations

θ̂in+1 = θ̂
i
n +

P̂ in
1+ x⊺inP̂

i
nxin

xin(y
i
n − x

⊺

inθ̂
i
n),

P̂ in+1 = P̂
i
n −

P̂ inxinx
⊺

inP̂
i
n

1+ x⊺inP̂
i
nxin

+
1
σ2Vi ,

(7)

where P̂ in = σ
−2 cov[θin−θ̂in]. The Kalamn filter, given the normality assumptions, is equiv-

alent to the Bayesian updating rule (3).5

� Timing. The timing of the decision process is illustrated in Figure 1. At the beginning

of each period n, given the current beliefs µin over the set of unknown parameters Θ, firm

i makes production decisions qin given by (5). After production decisions are made and

output is supplied to the market, the market price yn is realized according to its true data

generating process

yn = a− b
N∑

i=1

qin. (8)

At the beginning of the next period n + 1 firm i observes the realized price and up-

dates its prior beliefs µin over Θ using (7) by µin+1 and the cycle of production and belief

updating process starts over.

3. Self-confirming Equilibrium

Equilibrium in the model is defined by the self-confirming equilibrium (SCE) developed

by Fudenberg and Levine (1993) and adopted for adaptive learning literature in macroe-

conomics by Sargent (1999).

5See for instance Slade (1989), Balvers and Cosimano (1990) for the Kalamn filter applications in IO
and for derivations one can consult Harvey (1992), Ljungqvist and Sargent (2004).
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DEFINITION 1. SCE is a pair of belief and action (θ̄, q̄) s.t. given the belief θ̄ the action q̄

solves a firm’s decision problem (4), q̄ = q̂in(θ̄) and given the action q̄ the belief θ̄ is consistent

with observations

E[xin(yn − x
⊺

inθ̄)] = 0.

Solving for beliefs in the above orthogonality condition we get












θi0

θi1












=












a− bE[Qin] + ρbE[qin]

−b(1 + ρ)












, (9)

where ρ = cov[
∑N
j,i qjn,q

i
n]/ var[q

i
n] and also can be recognized as a conjectural variations

parameter.

By definition in the SCE the conjectural variations parameter ρ is zero as the SCE ac-

tion q̄ solves a firm’s maximization problem (4) where rivals’ quantity are taken as given.

From the industrial organization literature we know that the conjectural variations param-

eter ρ measures the degree of collusion; ρ = 0 corresponds to the Nash equilibrium (NE)

whereas ρ =N−1 corresponds to the collusive equilibrium (CE). Therefore, the SCE belief

and action pair coincides with the NE.

Solving (9) for ρ = 0 and ρ =N −1 provides with the following belief and action pairs

(θ̄, q̄) =
([

2a+ (N − 1)c
N +1

,−b
]′
,

a− c
b(N +1)

)

, (10)

(θ̃, q̃) =
(

[a,−bN ]′ ,
a− c
2bN

)

, (11)

respectively. We can verify that the action q̄ at ρ = 0 corresponds to the Nash equilibrium

output whereas the action q̃ at ρ =N −1 corresponds to the collusive equilibrium output

where firms maximize joint profits.

�Dominant escape path. Analytical tractability of themodel requires the use of a system

of ODEs associated with the discreet time belief updating system (7). Following Sargent

and Williams (2005), the dynamics of {θn,Pn} generated by (7) converge weakly to the

9
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Figure 2. The simulated time path of price, (a = 2, b = 0.1, σ2 = 0.1, ǫ = 1/365): for a lower
number of firms we observe escapes towards the higher CE price (a) whereas for a higher
number of firms we do not (b); the red dashed lines shows the SCE/NE and the CE prices.

solution of the following system of ODEs, called mean dynamics:

θ̇i = P i ḡ(θi , . . . ,θN ),

Ṗ i = σ2V̄ −P iM(θi)P i ,

i = 1, . . . ,N,

(12)

where ḡ(θi , . . . ,θN ) = E[xin(yn − x
⊺

inθ
i )],M(θi ) = E[xinx

⊺

in], and V̄ = σ2M(θ̄)−1.

We can show that the system of ODEs (12) has a unique E-stable steady-state which

coincides with the SCE (see Appendix A for derivations). Despite the fact that the SCE is

E-stable, simulating the belief updating system (7) we can observe recurrent escapes from

the SCE towards the CE, see Figure 2a. At time 0, firms’ beliefs constitute the SCE beliefs

θ̄ but after some time, when they start to update beliefs, their beliefs escape from the

SCE and firms start to coordinate their actions towards the collusive equilibrium price,

which for the given parametrization is equal to 1. This behavior depends on the number

of firms. For a higher number of firms, beliefs, and consequently the market price, stay

in the vicinity of the SCE and the collusive behavior is not observed, see Figure 2b.

As firms are homogeneous, imposing symmetry allows us to get rid of the subscript i

10



and concentrate on the mean dynamics of a single firm

θ̇ = Pḡ(θ,N ),

Ṗ = σ2V̄ −PM(θ)P,
(13)

Following Kolyuzhnov, Bogomolova, and Slobodyan (2006), in the system of ODEs

(13), if escapes from the SCE happen they occur along the direction of the dominant

eigenvector of P̄, as λ1/λ2≫ 1 where λ1 and λ2 are eigenvalues of P̄ . 6

The dominant eigenvector can be approximated by

v̄ =












q̄

−1












,

which has the direction that coincides with the direction of a line connecting the SCE

and the CE beliefs. Thus, the escape path from the SCE towards the CE is given by the

following line:

Γ = {θ | θ = θ̄ + δv̄,δ ∈R}. (15)

To derive an intuitive explanation of the dominant escape path Γ from the SCE we

can look more closely at the orthogonality condition (9). The orthogonality condition (9)

evaluated at the SCE can be expressed as

θ =












θ0

θ1












=












2a+(N−1)c
N+1

−b












+ bρ












q̄

−1












= θ̄ + bρv̄.

(16)

6We can perform the following decomposition

P̄ḡ(θ,N ) =HΛH ′ ḡ(θ,N ) = λ1c1v1 +λ2c2v2, (14)

where Λ is a diagonal matrix formed from the eigenvalues of P̄ , and the columns of H =
[

v1 v2
]

are the
corresponding eigenvectors of P̄ , and ci =H

′
i ḡ(θ,N ).

As λ1/λ2 ≫ 1 the second term in (14) becomes negligible and we obtain P̄ ḡ(θ,N ) ≈ λ1c1v1. Thus, the
dynamics of the system (13) are concentrated along the direction of dominant eigenvector v1 of P̄ . For a
similar idea one can refer to principal component analysis widely used in the econometrics literature (see
for example Stock and Watson (2002), Bai and Ng (2002), Bernanke and Boivin (2003)).
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SCE along the dominant escape path and another for initial beliefs outside the attraction
region of SCE along the dominant escape path. Mean belief trajectories are shown by
arrows.

The expression (16) defines a belief evolution in the neighborhood of SCE. This implies

that the firms’ belief vector θ escapes the SCE whenever the firms’ beliefs and conse-

quently firms’ actions become interdependent, ρ the conjectural variations parameter be-

comes positive. Expression (16) represents the same relationship as in (15) and, together

with (15) shows that the deviation from the SCE in its neighborhood happens along the

direction of v̄. As mentioned earlier, the direction of v̄ coincides with the direction of a

line connecting the SCE and the CE beliefs. Hence, if escape from the SCE happens it

happens towards the CE.

The belief updating procedure (7) and its stochastic approximation (13) drives beliefs

in a manner so as to minimize the mean forecast error u = E[uin]. Hence, to understand

the properties of the belief updating system one should look at the mean dynamics of

the forecast error, namely u̇/u.7 When u̇/u < 0, belief updating slows down as the mean

forecast error u moves towards zero, whereas when u̇/u > 0 belief updating speeds up as

the mean forecast error u diverges from zero.

7For a more detailed discussion one can consult Janjgava and Slobodyan (2011).
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The E-stability of the SCE implies that there is a neighborhood of SCE where u̇/u < 0

that defines an attraction region of the SCE, see Figure 3. Whenever the mean forecast

error diverges from zero, due to shocks present in the economy, but beliefs still remain

in the attraction region of SCE, u starts to converge to zero due to u̇/u < 0 and beliefs are

attracted back to the SCE. However, when beliefs happen to be outside of the attraction

region of SCE due to the updating process, they diverge from the SCE since u̇/u > 0 and

the mean forecast error u diverges from zero. Thus, beliefs escape the SCE whenever they

appear in the region where u̇/u > 0.

The propagated dynamics due to belief updating are intuitive enough. The mean

forecast error u is defined as the difference between the average price y = E[yn] and the

expected price ŷin = x
⊺

inθ̂in, u = y − ŷ. When firm i observes higher average price than

he expected, y − ŷ > 0, he interprets it as a lower demand and reduces output. So, as far

as y − ŷ > 0 firms keep reducing their output and eventually it is closer and closer to the

collusive equilibrium (CE) level.

On the other hand, when y−ŷ < 0, firm i interprets it as a higher demand and increases

output. So, as far as y− ŷ < 0 firms keep increasing their output and eventually it is closer

and closer to the Nash equilibrium (NE) output.

4. Mutual Interdependence and Collusion Frontier

The central question with which the theory of oligopoly is concerned is how firms coordi-

nate with each other when moving towards the collusive outcomes. Cournot thought that

cartel agreements may only be maintained by “means of a formal engagement" (Vives,

2000). This view was challenged by Chamberlin (1929). He thought that in markets with

a small number of firms the mechanism that elevates prices above competitive levels is

the firms’ mutual interdependence; the firms’ recognition of their interdependence and

the futility of cutting prices progressively drives the market price towards the monopoly

price.
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The model developed by Janjgava and Slobodyan (2011) to study endogenous collu-

sion possibilities captures Chamberlin’s reasoning. Janjgava and Slobodyan (2011) find

that the belief system (7) exhibits escapes from the SCE towards the CE when the degree

of firms’ mutual interdependence becomes high enough to trigger cooperation. This hap-

pens when the interdependence of firms’ actions ρ reaches some threshold value ρ∗, an

interdependence threshold.

Following Janjgava and Slobodyan (2011), we can define the interdependence threshold

ρ∗ as a solution of u̇/u = 0. Janjgava and Slobodyan (2011) concentrate on investigating a

specific market where the existence of ρ∗ is assumed, and do not investigate the properties

of u̇/u = 0. In this section, I investigate the properties of u̇/u = 0 and study the existence

of the interdependence threshold ρ∗. It is shown that the existence of the interdependence

threshold ρ∗ depends on the market size, the volatility of the firm-specific shock and the

number of firms present in the market.

The mean dynamics of the forecast error along the dominant eigenvector v̄ direction

is given by
u̇

u
=

[

(ψ/(N +1)2 +6)
4((N − 1)− ρ)(1 + ρ)3

]

f (ρ), (17)

where f (ρ) = ρ4 + a1ρ3 + a2ρ2 + a3ρ + a4 represents the 4-th order market characteristic

polynomial8 and

ψ =













a− c

b
√

σ2
2













2

is amarket characteristic number and
√

ψ denotes the normalized competitive market size.9

In the rest of the paper I refer to ψ as a normalized market size.

Escapes from the SCE happens when the belief vector θ hits the u̇/u = 0 boundary

and u̇/u changes the sign from negative to positive. The u̇/u = 0 boundary is determined

by the roots of the market characteristic polynomial f (ρ). f (ρ) has at least one real root

8One can verify that ρ = −1 is not a root of the polynomial f (ρ), f (−1) = − b4(a−c)2N2

(a−c)2+6b2(1+N )2σ22
=

−b4N2 ψ
(ψ/(N+1)2+6) .

9Here, a−cb is a perfect competition market size where a price equals a marginal cost, y=c.
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out of its four roots and when all its roots are real only one of them are negative (see

Appendix B). The interdependence threshold ρ∗ is given by the intersection of u̇/u = 0

boundary and the dominant escape path (16). So, it is one of the roots of the market

characteristic polynomial f (ρ).

PROPOSITION 1. An implicit coordination on collusive outcomes is only possible when there

is an interdependence threshold, ρ∗ an unstable fixed point of u̇/u, such that 0 < ρ∗≪ 1. This

holds when all four fixed points of u̇/u are real.

Proof. See Appendix B.

Let’s suppose that all four fixed points ρ1 < ρ2 < ρ3 < ρ4 of u̇/u are real where ρ1 < 0

and other fixed points are positive. At the SCE both the degree of mutual interdepen-

dence ρ and the mean forecast error u are zero. As the SCE is E-stable u̇/u is negative

when the degree of mutual interdependence, ρ, is between ρ1 and ρ2 and the mean fore-

cast error u converges to zero, leading beliefs to converge to the SCE. Whereas u̇/u is

positive when ρ ∈ (ρ2, ρ3), and the mean forecast error u diverges from zero, leading be-

liefs to diverge from the SCE towards the CE. Therefore, ρ2 is an interdependence threshold

ρ∗.
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In each period, firms update their beliefs, θ, about unknown demand parameters

using the same price signals which lead their beliefs to become interdependent. When

the level of mutual interdependence ρ reaches the threshold ρ∗ firms start to coordinate

on collusive outcomes, see Figure 3, where θ∗ is a belief vector corresponding to the

degree of mutual interdependence at ρ = ρ∗.

When the number of firms, N , is large, price signals become non-informative due to a

large content of firm-specific shocks in the aggregate output promoting belief updating

and consequently a possibility of coordination on a collusive outcome to cease. This

suggests that there should be some threshold number of firms, N̂ , such that if N > N̂ that

no coordination on a collusive outcome is possible.

Following the proof of Proposition 1 in Appendix B the interdependence threshold ρ∗

exist when the discriminant function of market characteristic polynomial f (ρ) is negative,

D(N̂ (ψ),ψ) < 0. So, solving D(N̂ (ψ),ψ) = 0 for N̂ (ψ) gives us a boundary that defines a

collusion frontier, a maximum number of firms which can support implicit coordination

towards the collusion given ψ, see Figure 4.

COROLLARY 1. In a market with a given normalized market size (ψ), there is a maximum

number of firms, (N̂ (ψ)), which can support implicit coordination on collusive outcomes which

defines the collusion frontier. In the markets with a market structure such that (ψ,N ) is on or

above the collusion frontier (D(N̂ (ψ),ψ) ≥ 0) no collusion possibilities may arise. Otherwise

there are possibilities of coordination on collusive outcomes with a non-zero probability.

With the definition of a collusion frontier, we are now in a position to analyze depen-

dence of the interdependence threshold ρ∗(ψ,N ) on a market structure (ψ,N ), see Figure 5.

As was expected, the interdependence threshold ρ∗(ψ,N ) is decreasing with respect to the

normalized market size ψ and increasing with respect to the number of firms N . For ex-

ample, in the market with (ψ,N ) = (9000,21) the correlation of the firms’ actions ρ∗(ψ,N )

should be at least about 0.5, firms to become coordinated on collusive outcomes whereas

in the market with (ψ,N ) = (9000,11) it only needs to be 0.05 to trigger coordination on

a collusive behavior.
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Figure 5. interdependence threshold isolines (dashed lines).

PROPOSITION 2. In markets with a higher normalized market size (ψ) and lower number

of firms (N ) the coordination towards the collusive outcomes is triggered by a lower degree of

correlation among firms’actions ρ∗(ψ,N ). Therefore, in these markets it is easier for firms to

coordinate and thus, the higher the probability of attaining collusive outcomes.

The above result is quite intuitive. The higher the normalized market size, the greater

the motivation to coordinate towards cooperation due to higher gains from collusion and

thus, the lower the degree of mutual interdependence which is needed to attain collusive

behavior. However, with a larger number of firms it is difficult to coordinate and the co-

operation becomes harder. As a result we can use the interdependence threshold ρ∗(ψ,N ) to

rank industries according to their propensity to collude given themarket structure (ψ,N ).

For example, in industries with more efficient technologies, the normalized market size

is higher and thus it is easier to coordinate towards the collusive outcomes.

5. Free Entry and Social Welfare

This section deals with the social welfare analysis of free entry. The excess entry theo-

rem shows that in homogeneous markets under free entry equilibrium we have excessive
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entry. This suggests that policy makers have to restrict entry in these markets and pro-

tect incumbents from any potential entry. These results are based on the assumption

that firms cannot coordinate on collusive outcomes. However, as we saw in the previ-

ous section, in homogeneous markets under demand uncertainty firms might implicitly

coordinate on collusive outcomes. A priori, the presence of collusion among firms is not

desirable for social efficiency since it decreases the social welfare. The restriction of entry,

a suggestion of previous research findings, makes for firms easier to coordinate towards

collusion as well as to maintain it, see Proposition 2. Therefore, it is interesting to in-

vestigate whether the free entry equilibrium number of firms is still excessive when the

possibility of such coordination is considered.

� Free entry equilibrium. Under free entry N e number of firms are established, deter-

mined by zero profit condition which yields the following expression

N e =

√

ψ

(1 +κ)
− 1, (18)

where κ = K/(bσ2
2 ) is a normalized fixed cost.

� Social planner’s problem.10 The social planner’s problem is to choose the socially

optimal number of firms N ∗ that maximize a discounted social welfare

maximize
N

∞∫

0

W (θ,N )e−rt dt

subject to θ̇ = Pḡ(θ,N ),

Ṗ = σ−2V̄ −PM(θ)P,

N ≤N e,

θ(0) = θ̄, P(0) = P̄,

(19)

where W (θ,N ) is a social welfare function and r = − lnδ is a common discount rate. The

last constraint serves as firms’ participation constraint and ensures that firms’ expected

10Following the previous literature, only the second best social planner’s problem is considered.
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profits are non-negative. When the constraint is binding free entry provides an insuffi-

cient number of firms. However, without subsidy provisions firms with negative profits

are not sustainable and a feasible socially optimal number of firms coincides with the free

entry number of firms. Hence, it excludes insufficient entry possibilities.

The social welfare function W (θ,N ) is defined as the sum of consumer and producer

surpluses and is given by the following expression

W (θ,N ) = E















∑N
i=1 q

i
n∫

0

y(Q)dQ −








c
N∑

i=1

qin(θ) +KN









|yn−1















. (20)

The entry might have two opposing effects on social welfare. One is the “business

stealing" effect of entry, after Mankiw and Whinston (1986), where incumbent firms are

forced to reduce output due to new entry and entry is more desirable to new entrants than

it is to society. The other one is the “competition" effect that entry increases competition

and hinders coordination towards the collusive outcomes. When regulatory authorities

solve for the socially optimal number of firms the market structure becomes exogenous.

The exogenous market structure stimulates an accommodating pricing behavior and in

addition to the “business stealing" effect of entry it makes the “competition" effect of en-

try operative. However, the “competition" effect of entry is not present in the excess entry

theorem. The “business stealing" effect reduces the social welfare whereas the “competi-

tion" effect enhances it. Thus, in opposition to the excess entry theorem the net effect of

entry on social welfare depends which of these two effects outweighs each other.

Differentiating the expression for the social welfare function (20) with respect to the

number of firms and evaluating it at the SCE with the free entry number of firms yields

dW

dN
= (y − c) ∂q

∂N
︸      ︷︷      ︸

“business stealing" effect (-)

+ (y − c)∂q
∂ρ

∂ρ

∂N
︸          ︷︷          ︸

“competition" effect (+)

. (21)

The first term is the same “business stealing" effect described by equation (2) in Mankiw
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and Whinston (1986) whereas the second term is the “competition" effect not present

in Mankiw and Whinston (1986). The latter term comes from the fact that the mutual

interdependence of firms ρ affects the firms actions and also new entry affects the mutual

interdependence of firms ρ.

Let’s consider two possible situations N ∗ ≥ N̂ (ψ) and N ∗ < N̂ (ψ). When N ∗ ≥ N̂ (ψ)

no coordination towards collusive behavior happens and beliefs stay in the NE. So, the

social planner’s dynamic problem (19) indeed becomes static problem and corresponds

to the situation considered in Mankiw and Whinston (1986). Thus, whenever N ∗ ≥ N̂ (ψ)

the socially optimal number of firms N ∗ is a solution of the same optimization problem

as in Mankiw and Whinston (1986) which is given by

Nm = 3

√

ψ

κ +1/2
− 1.

When N ∗ < N̂ (ψ) there is a space for coordination among firms towards the collusive

outcomes and the social planner’s problem is no longer a static but a dynamic problem

(19). The investigation of the problem is further complicated by the relatively large num-

ber of parameters (a, b, c, σ2,N ) that the belief updating system (13) depends on. With no

loss of generality, to simplify comparative static analysis the following transformation of

beliefs are employed:

θ̂ =
θ + [−c, b ]′

b
√

σ2
2

. (22)

This delivers the following belief updating system

˙̂θ = P ˆ̄g(θ̂,N ),

Ṗ = σ2V̄ −PM(θ̂)P,
(23)
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where

ˆ̄g(θ̂,N ) =












û
√

σ2
2 ûq̂ −σ2

2 θ̂1












,

û =
u

b
√

σ2
2

=
√

ψ − (N − 1)q̂ − θ̂0 −
√

σ2
2 θ̂1q̂,

q̂ =
q

b
√

σ2
2

=
θ̂0

2(θ̂1 − 1/
√

σ2
2 )
.

As a results, the dynamics of the transformed beliefs θ̂ depend only on the normalized

market size ψ, the standard deviation of firm-specific shock σ2, and the number of firms

N .

The transformation of beliefs (22) simplifies the characterization of the parameter

dependance of non-cooperative, cooperative and price war phases which are observed

during the life cycle of the firms. Firms start in the SCE/NE. After some time τNE(N |ψ, ǫ)

when a firm’s belief hits the belief threshold θ̂∗ firms start to learn to coordinate on the

cooperative behavior and escape from the NE that drives the system towards the CE. The

firms maintain the CE beliefs and sustain the collusion for a time period τCE(N |ψ,σ2)

until the unanticipated fall of mean actual price below the mean forecasted price trig-

gers (u < 0) the price war that pushes the system back towards the NE and after some

time τpw(N |ψ,σ2) firms are back again in the NE and the cycle start again. Let’s de-

note T (N |ψ,σ2,ǫ) as the time needed for the belief system to escape from the NE to-

wards the CE and return back to it again, thus T (N |ψ,σ2,ǫ) = τNE(N |ψ,ǫ)+τCE (N |ψ,σ2)+

τpw(N |ψ,σ2). Utilizing this recurrent feature of the belief dynamics after every time pe-

riod T (N |ψ,σ2), we can rewrite the social planner’s objective function in (19) as follows

V (N |ψ,κ,δ,σ2,ǫ) =
1

1− e−rT (N |ψ,σ2,ǫ)

T (N |ψ,σ2,ǫ)∫

0

Ω(θ̂,N |ψ,κ,σ2,ǫ)e−rt dt, (24)

where Ω(θ̂,N |ψ,κ,σ2,ǫ) = W (θ̂,N )
bσ2

2
is the normalized social welfare function.
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Figure 6. The solution of the social planner’s problem and its comparative statics, (δ =
0.98, σ2 = 0.1, ǫ = 1/365): (a) depicts the socially optimal number of firms N ∗(ψ,κ|δ,σ2,ǫ)
(solid line) and compares it with the socially optimal number of firms Nm(ψ,κ) (dashed
blue line) when possibility of coordination towards collusion is ignored as well as with
the free entry equilibrium number of firms N e(ψ,κ) (dash-dot red line). The normalize
market size ψ is set at 106 and N̂ (ψ) = 348; (b) depicts the isolines of the socially optimal
number of firms N ∗(ψ,κ|δ,σ2,ǫ) and shows its comparative statics properties.

A natural upper bound for the solution is given by the following expression

N ∗ ≤min{N̂ (ψ),N e(ψ,κ)}.

There is no analytical solution to the problem (19) and we have to rely on numerical

analysis.

� Numerical results and comparative statics. Numerical results are obtained with the

parameter values of (δ, σ2, ǫ) set at (0.98, 0.10, 1/365). The numerical solution of the social

planner’s problem and its properties are depicted in Figure 6. Figure 6a compares the

socially optimal number of firms N ∗(ψ,κ|δ,σ2,ǫ) under demand uncertainty both with

the free entry equilibrium number of firms N e(ψ,κ) and the socially optimal number

of firms Nm(ψ,κ) under the perfect information of Mankiw and Whinston (1986). We

can see that for lower values of the normalized fixed cost κ the participation constraint

(zero profit condition) is binding and in contrast to previous studies, such as Mankiw
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and Whinston (1986) and subsequent research, the free entry equilibrium delivers an

insufficient rather than excessive entry when the “competition effect" of entry is modeled

explicitly.

The comparative statics of the optimal solution N ∗(ψ,κ|δ,σ2,ǫ) can be examined sim-

ply by plotting its isolines, see Figure 6b. From the isolines of the solution we can see

that N ∗(ψ,κ|δ,σ2,ǫ) is an increasing function with respect to the normalized market size

ψ whereas with respect to the normalized fixed cost κ it is decreasing, as can also be seen

in Figure 6a.

The results are quite intuitive. The higher the normalized market size ψ the higher

the possibility of coordination towards the collusive outcome (see Proposition 2) and

controlling for the “competition" effect becomes even more important when assessing

the socially optimal number of firms. Thus, the higher the normalized market size ψ

the higher the gain in social welfare from additional entry in hindering possibilities of

coordination on a collusive outcome. On the other hand, higher the normalized market

size ψ less business should be “stolen" with each additional entry. Hence, the socially

optimal number of firms is increasing with respect to the normalized market size ψ.

The entry effect on social welfare with regards to the normalized fixed costs are slightly

different as it affects only the “business stealing" effect of entry but not the possibility of

coordination towards collusion. When the normalized fixed cost is high more business

needs to be “stolen" from existing firms for a new firm to operate profitably. Thus, with a

high normalized fixed cost, the net marginal effect of entry on social welfare is negative

and the free entry number of firms exceeds the socially optimal number of firms.

The results can be summarized in the following proposition:

PROPOSITION 3. In markets with a low normalized fixed cost (κ) and a high enough normal-

ized market size (ψ), the zero profit condition might be binding and the number of firms under

free entry equilibrium might be socially insufficient rather than excessive.

The results show that the findings of Mankiw and Whinston (1986) are a special case

and whether the free entry equilibrium number of firms is excessive or not depends on
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the market structure and conditions when demand parameter uncertainty is considered.

Hence, the traditional wisdom in industrial organization that free entry is desirable for

social efficiency is valid in these markets.

6. Conclusion

In this paper I have studied the social efficiency of free entry under demand parameter

uncertainty. Previous research on free entry and its welfare implications in homogeneous

product markets under perfect information shows that the free entry equilibrium delivers

excessive entry, known as the excess entry theorem and suggests restrictive entry regula-

tion policies. I have shown that the introduction of demand parameter uncertainty alters

the results of the excess entry theorem and the restrictive entry regulation policies might

facilitate collusion possibilities.

When entry is restricted by the regulatory authorities the market structure becomes

exogenous. The theory of endogenous market structure has shown that when entry is

exogenous it stimulates firms to coordinate their actions towards accommodating pricing

behavior to increase prices (Etro (2010)). However, the excess entry theorem does not

consider this fact and its predictions are solely based on the “business stealing" effect of

entry where incumbent firms are forced to reduce output due to new entry and entry is

more desirable to new entrants than it is to society. Under restricted entry a fixed num-

ber of firms operate in the market and the abuse of market power and the possibility of

accommodating pricing behavior makes the additional effect of entry, the “competition"

effect operative. The “competition" effect reduces market power and hinders the possibil-

ity of coordination on a collusive outcome. These two effects of entry impact differently

on social welfare and whether entry is socially efficient depends not only on the “business

stealing" effect but also on the “competition" effect.

In this paper, I show that learning the unknown demand parameters when market

structure is exogenous leads firms to implicitly coordinate on collusive outcomes and
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allows the study of the “competition” effect of entry along with the “business stealing"

effect. I find that the competition effects of entry outweigh the “business stealing" effects

of entry in the markets with a high enough competitive market size and supports the va-

lidity of the traditional wisdom in industrial organization that the free entry is desirable

for social efficiency in homogeneous product markets.

Additionally, I derive the collusion frontierwhich shows themaximum number of firms

which might support implicit coordination on collusive outcomes due to demand uncer-

tainty in the homogeneous market given the market size. It can be used to assess the bias

of a specific market towards possibilities of implicit coordination on collusive outcomes.
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Appendix

A. E-stability of the SCE

To find the steady-state of the system of ODEs (12) we have to solve θ̇i = 0 for all

i ∈ {1, ...,N }. Since P i is positive definite matrix, a solution for the steady-state can be

obtained through solving ḡ(θi , . . . ,θN ) = 0 for all i ∈ {1, ...,N }.

Let, qi = E[qin], y = E[yn] = a−b
∑N
i=1 q

i , and ui = E[uin] = y−θi0−θi1qi , then by definition

ḡ(θi , . . . ,θN ,N ) is given by the following expression

ḡ(θi , . . . ,θN ) =












ui

uiqi − (b+θi1)σ2
2i












.

Solving ḡ(θi , . . . ,θN ,N ) = 0 gives

ui = 0, (25)

θi1 = −b. (26)

Using (26) and (5) in (25) we get

θi0 = 2y − c.

Therefore, as was expected the steady-state value of the belief vector θi are the same

among the firms and is given by

θi =
[

2a+ (N − 1)c
N +1

,−b
]′
,

which is indeed the SCE belief θ̄.

Following Evans and Honkapohja (2001), the sufficient condition for E-stability of the

system of ODEs (12) is that the Jacobian of its belief updating part at the SCE has all
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eigenvalues with a negative real part. The Jacobian is given by the following matrix

h̄θ
N×N

=



























P̄1∂ḡ1(θ̄)
∂θ1

P̄1∂ḡ1(θ̄)
∂θ2

. . .
P̄1∂ḡ1(θ̄)
∂θN

P̄2∂ḡ2(θ̄)
∂θ1

P̄2∂ḡ2(θ̄)
∂θ2

. . .
P̄2∂ḡ2(θ̄)
∂θN

... · · · . . .
...

P̄N∂ḡN (θ̄)
∂θ1

P̄N∂ḡN (θ̄)
∂θ2

. . .
P̄N∂ḡN (θ̄)
∂θN



























, (27)

where

P̄i∂ḡi(θ̄)
∂θi

=












−1 0

0 −1












,
P̄i∂ḡi(θ̄)
∂θj

=












−1/2 q̄

0 0












= B.

We can rewrite the Jacobian h̄θ in a compact way

h̄θ = (J − I )⊗B− I ,

where J is aN×N matrix of ones and I is a identity matrix with ones on the main diagonal

and zeros elsewhere.

It is well known or we can easily verify that J has N − 1 multiple eigenvalues of 0

and one eigenvalue of N . Let the spectrum of a matrix J − I , and B matrices be λ and µ

respectively, then we have

λ = (−1, . . . ,−1,N − 1), µ = (−1/2,0).

The eigenvalues of the Kronecker product of J − I , and B matrices (J − I )⊗B are

λiµi , i = 1, . . . ,N,j = 1, . . . ,N.

(1/2, . . . ,1/2,−(N − 1)/2,0, . . . ,0).

Finally, the eigenvalues of h̄θ are given by

λiµi − 1, i = 1, . . . ,N,j = 1, . . . ,N.
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(−1/2, . . . ,−1/2,−(N − 1)/2− 1,−1, . . . ,−1).

We see that all eigenvalues of the Jacobian h̄θ are negative, which proves the E-stability

of the system of ODEs (12).

B. Analyzing the Market Characteristic Polynomial

This appendix provides proof for Proposition 1. First, let’s prove the following two propo-

sitions before dealing directly with Proposition 1.

PROPOSITION 4. The market characteristic polynomial f (ρ) has at least one real root. There-

fore, it has either all four roots real or two real and two complex conjugate roots since f (ρ) is a

4-th order polynomial.

Proof. Since f (0) < 0, f (−∞) > 0 and f (+∞) > 0 the market characteristic polynomial can

not have all roots complex. Moreover, f (ρ) is 4-th degree polynomial and therefore, it

can have either four real roots (one negative and three positive or three negative and one

positive) or two real (one positive and one negative) and two complex conjugate roots.

The market characteristic polynomial f (ρ) is associated with the following discrimi-

nant function.

D(ψ,N ) = A1(N )ψ5 +A2(N )ψ4 +A3(N )ψ3 +A4(N )ψ2 +A5(N )ψ +A6(N ). (28)

Whether f (ρ) has all roots real or two real and two complex conjugate roots depends on

the sing of its discriminant:11

D(ψ,N ) > 0 two real and two complex conjugate roots,

D(ψ,N ) = 0 two simple real and one twofold real roots,

D(ψ,N ) < 0 four real roots.

11One can check that it is not possible to have one simple real and one threefold real roots since ψ is
positive.
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Solving D(ψ,N ) = 0 for N we obtain a threshold boundary N̂ (ψ), the number of firms

supporting two simple real and one twofold real roots, dividing the parameter space into

two subspaces, D(ψ,N ) ≥ 0 and D(ψ,N ) < 0, Figure 7. For N ≥ 2, D(ψ,N ) < 0 is possible

when ψ > ψ = 1064. So, the lower bound for ψ s.t D(ψ,N ) < 0 for N ≥ 2 is ψ = 1064.

PROPOSITION 5. The market characteristic polynomial f (ρ) has only one negative root when

all its roots are real.

Proof. According Descartes’ rule of signs, to have only one negative root it is enough to

show that coefficients of f (ρ) a2 < 0 and a3 > 0 when all roots are real, D(ψ,N ) < 0. We

can check that a3 > 0 implies a2 < 0. For N ≥ 2, a3 > 0 when

ψ >
4(N +1)2(N (N +2)− 6)

(N − 1)2 .

From Figure 7 we see that when all roots are real (D(ψ,N ) < 0) a3 > 0. This proves that

when all roots are real f (ρ) can only have one negative root.
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Figure 7. Shows the maximum number of firms supporting collusion N̂ (ψ) given market
characteristic number ψ and also that a3 is positive when all roots of f (ρ) are real.

Now, we can go back to Proposition 1. From the above propositions we know that we

can have only two possibilities: 1) four real roots (one negative and three positive) and 2)
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two real (one positive and one negative) and two complex conjugate roots.

Case 1: D(ψ,N ) < 0, four real roots ρi , i = {1,2,3,4} (in the increasing order)

Since the SCE is E-stable f (ρ) is negative for ρ ∈ (ρ1,ρ2)
⋃

(ρ3,ρ4) and positive oth-

erwise. Therefore, when ρ ∈ (ρ2,ρ3), u̇/u becomes positive and belief system escapes

from the SCE and we observe cooperative behavior. Thus, ρ2 serves as an interdependence

threshold ρ∗(ψ,N ). The cooperative behavior to be maintained, the belief updating system

should drive ρ to cross the threshold ρ∗(ψ,N ) in a finite time. Figure 8 depicts that for the

range of parameter values, (ψ,N ) a mean hitting time to the threshold ρ∗(ψ,N ) is finite

and therefore the mean exit time from the NE is finite as well. This effectively means

that when D(ψ,N ) < 0 we might observe implicit coordination on collusive outcomes and

escape from the NE towards the CE.

Case 2: D(ψ,N ) ≥ 0, two real and two complex conjugate roots

For the parameter values when D(ψ,N ) becomes non-negative ρ2 and ρ3 becomes

complex numbers and we are left only with two real roots ρ1 and ρ4. Therefore, we

may observe escapes from the NE only when ρ > ρ4. The ρ4 is the largest positive root of

f (ρ) and now the belief system needs more time to exit from the NE than in the case of
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D(ψ,N ) < 0. The bounds for the largest positive root of f (ρ) are given by

(N +1)









√

2N
N +1

− 1







≤ ρ4 ≤ (N − 1).

It is a nice observation that bounds does not depend on ψ. Even using the lower bound

we can show that the mean exit time from the NE when D(ψ,N ) ≥ 0 is a large number,

Figure 9.

Therefore, we can conclude that when D(ψ,N ) ≥ 0 we do not observe implicit co-

operation among the firms whereas otherwise we might. This effectively means that in

an industry with the characteristic number ψ a tacit collusion can be observed if, and

only if, D(ψ,N ) < 0, or in other words the number of firms does not exceed N̂ (ψ), N ∈

[2, . . . , N̂ (ψ)). This proves Proposition 1.

C. Mean Hitting Time

Consider a one-dimensional Ornstein-Uhlenbeck process

dξ = −ξdt +
√
2dW,
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whereW is a Wiener process.

Following Ricciardi and Sato (1988), the mean hitting time τ = inf{t|ξt = ξ∗} to a

threshold ξ∗ for the Ornstein-Uhlenbeck process ξ when it start at zero can be evaluated

with the following expression

E[τ] =
1
2

∞∑

k=1

(
√
2ξ∗)k

k!
Γ

(

k

2

)

, (29)

where Γ(·) is the gamma function.

Following Kolyuzhnov, Bogomolova, and Slobodyan (2006), we can show that belief

dynamics around the SCE are approximated by the following one-dimensional Ornstein-

Uhlenbeck process

dϕ̂ = −ϕ̂dt +
√

ǫλΣ̄dW, (30)

where ϕ̂ = v′(θ − θ̄), v = v̂/‖v̂‖, v̂ = (v̄′1, . . . , v̄
′
N ), v̄

′i = v̄, and λΣ̄ = 2b2(N − 1)‖v̄‖.

We are interested in the mean hinting time of ϕ̂ to the threshold ϕ̂∗ which can be

assessed using the expression (29) with the transformed threshold ξ∗ =
√

2/(ǫλΣ̄)ϕ̂
∗. The

expression for the threshold ξ∗ is given by

ξ∗ =
1√
ǫ

√

N

N − 1ρ
∗(ψ,N ).
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